Analysis of a mesoscopic stochastic model of microtubule dynamic instability.
نویسندگان
چکیده
A theoretical model of dynamic instability of a system of linear one-dimensional microtubules (MTs) in a bounded domain is introduced for studying the role of a cell edge in vivo and analyzing the effect of competition for a limited amount of tubulin. The model differs from earlier models in that the evolution of MTs is based on the rates of single-mesoscopic-unit (e.g., a heterodimer per protofilament) transformations, in contrast to postulating effective rates and frequencies of larger-scale macroscopic changes, extracted, e.g., from the length history plots of MTs. Spontaneous GTP hydrolysis with finite rate after polymerization is assumed, and theoretical estimates of an effective catastrophe frequency as well as other parameters characterizing MT length distributions and cap size are derived. We implement a simple cap model which does not include vectorial hydrolysis. We demonstrate that our theoretical predictions, such as steady-state concentration of free tubulin and parameters of MT length distributions, are in agreement with the numerical simulations. The present model establishes a quantitative link between mesoscopic parameters governing the dynamics of MTs and macroscopic characteristics of MTs in a closed system. Last, we provide an explanation for nonexponential MT length distributions observed in experiments. In particular, we show that the appearance of such nonexponential distributions in the experiments can occur because a true steady state has not been reached and/or due to the presence of a cell edge.
منابع مشابه
Designing a new multi-objective fuzzy stochastic DEA model in a dynamic environment to estimate efficiency of decision making units (Case Study: An Iranian Petroleum Company)
This paper presents a new multi-objective fuzzy stochastic data envelopment analysis model (MOFS-DEA) under mean chance constraints and common weights to estimate the efficiency of decision making units for future financial periods of them. In the initial MOFS-DEA model, the outputs and inputs are characterized by random triangular fuzzy variables with normal distribution, in which ...
متن کاملRobust inter and intra-cell layouts design model dealing with stochastic dynamic problems
In this paper, a novel quadratic assignment-based mathematical model is developed for concurrent design of robust inter and intra-cell layouts in dynamic stochastic environments of manufacturing systems. In the proposed model, in addition to considering time value of money, the product demands are presumed to be dependent normally distributed random variables with known expectation, variance, a...
متن کاملDynamic Instability Analysis of Embedded Multi-walled Carbon Nanotubes under Combined Static and Periodic Axial Loads using Floquet–Lyapunov Theory
The dynamic instability of single-walled carbon nanotubes (SWCNT), double-walled carbon nanotubes (DWCNT) and triple-walled carbon nanotubes (TWCNT) embedded in an elastic medium under combined static and periodic axial loads are investigated using Floquet–Lyapunov theory. An elastic multiple-beam model is utilized where the nested slender nanotubes are coupled with each other through the van d...
متن کاملMathematical Modeling of Dynamic Instability in Microtubules
Microtubules are biological polymers that have many functions in cells, such as support and structure in the cytoskeleton, providing avenues and mechanisms for intracellular transportation, and separating chromatids during cell division. Microtubule dynamic instability is an integral part of cell functioning, enabling microtubules to rapidly find and change spatial arrangements and interact wit...
متن کاملThe mechanisms of microtubule catastrophe and rescue: implications from analysis of a dimer-scale computational model
Microtubule (MT) dynamic instability is fundamental to many cell functions, but its mechanism remains poorly understood, in part because it is difficult to gain information about the dimer-scale events at the MT tip. To address this issue, we used a dimer-scale computational model of MT assembly that is consistent with tubulin structure and biochemistry, displays dynamic instability, and covers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 74 4 Pt 1 شماره
صفحات -
تاریخ انتشار 2006